Beginning Partial Differential Equations – Peter O’Neil – 2nd Edition

Description

A rigorous, yet accessible, introduction to partial differential equations—updated in a valuable new edition

Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addressing more specialized topics and applications.

Maintaining the hallmarks of the previous edition, the book begins with first-order linear and quasi-linear PDEs and the role of characteristics in the existence and uniqueness of solutions. Canonical forms are discussed for the linear second-order equation, along with the Cauchy problem, existence and uniqueness of solutions, and characteristics as carriers of discontinuities in solutions. Fourier series, integrals, and transforms are followed by their rigorous application to wave and diffusion equations as well as to Dirichlet and Neumann problems. In addition, solutions are viewed through physical interpretations of PDEs. The book concludes with a transition to more advanced topics, including the proof of an existence theorem for the Dirichlet problem and an introduction to distributions.

Additional features of the Second Edition include solutions by both general eigenfunction expansions and numerical methods. Explicit solutions of Burger’s equation, the telegraph equation (with an asymptotic analysis of the solution), and Poisson’s equation are provided. A historical sketch of the field of PDEs and an extensive section with solutions to selected problems are also included.

Beginning Partial Differential Equations, Second Edition is an excellent book for advanced undergraduate- and beginning graduate-level courses in mathematics, science, and engineering.

Table of Contents

CHAPTER 1: First‐Order Equations
CHAPTER 2: Linear Second‐Order Equations
CHAPTER 3: Elements of Fourier Analysis
CHAPTER 4: The Wave Equation
CHAPTER 5: The Heat Equation
CHAPTER 6: Dirichlet and Neumann Problems
CHAPTER 7: Existence Theorems
CHAPTER 8: Additional Topics
CHAPTER 9: End Materials

No Comments

  • And now, tell us what you think about this publication. Have you found it useful? Which of the topics in the book did you find most helpful? Tell us your opinion! And please, remember that keeping this site updated so you can enjoy the content requires time and effort 😉.

avatar
  Subscribe  
Notify of