or the ninth edition of CALCULUS, the authors analyzed the copious data they receive from their website, http: //www.CalcChat.com. The site offers free solutions to odd-numbered exercises in the text. The site currently has over 1 million hits per month. The authors analyzed these hits to see which exercise solutions were accessing most often. They revised and refined the exercise sets based on this analysis. The result is the only calculus on the market that uses real data about its exercises to address student needs.

The Larson Calculus program has a long history of innovation in the calculus market. It has been widely praised by a generation of students and professors for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.

Chapter 0: Preparation for Calculus
0.1: Graphs and Models
0.2: Linear Models and Rates of Change
0.3: Functions and Their Graphs
0.4: Fitting Models to Data

Chapter 1: Limits and Their Properties
1.1: A Preview of Calculus
1.2: Finding Limits Graphicalls and Numerically
1.3: Evaluating Limits Analytically
1.4: Continuity and One-Sided Limits
1.5: Infinite Limits

Chapter 2: Differentiation
2.1: The Derivative and the Tangent Line Problem
2.2: Basic Differentiation Rules and Rates of Change
2.3: Product and Quotient Rules and Higher-Order Derivatives2
2.4: The Chain Rule
2.5: Implicit Differentiation
2.6: Related Rates

Chapter 3: Applications of Differentiation
3.1: Extrema on an Interval
3.2: Rolle’s Theorem and the Mean Value Theorem
3.3: Increasing and Decreasing Functions and the First Derivative Test
3.4: Concavity and the Second Derivative Test
3.5: Limits at Infinity
3.6: A summary of Curve Sketching
3.7: Optimization Problems
3.8: Newton’s Method
3.9: Differentials

Chapter 4:
4.1: Antiderivatives and Indefinite Integration
4.2: Area
4.3: Riemann Sums and Definite Integrals
4.4: The Theorem of Calculus
4.5: Integration by Substitution
4.6: Numerical Integration

Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions
5.1: The Natural Logarithmic Function: Differentiation
5.2: The Natural Logarithmic Function: Integration
5.3: Inverse Functions
5.4: Exponential Functions: Differentiation and Integration
5.5: Exponential Functions: Differentiation and Integration
5.6: Inverse Trigonometric Functions: Differentiation
5.7: Inverse Trigonometric Functions: Integration
5.8: Hyperbolic Functions

Chapter 6: Equations
6.1: Slope Fields and Euler’s Method
6.2: Differential Equations: Growth and Decay
6.3: Separation of and the Logistic Equation
6.4: First-Order Linear Differential Equations

Chapter 7: Applications of Integration
7.1: Area of a Region Between Two Curves
7.2: Volume: The Disk Method
7.3: Volume: The Shell Method
7.4: Arc Length and Surfaces of Revolution
7.5: Work
7.6: Moments, Centers of Mass, and Centroids
7.7: Fluid Pressure and Fluid Force

Chapter 8: Integration , L’Hopital’s Rule, and Improper Integrals
8.1: Basic Integration Rules
8.2: Integration by Parts
8.3: Trigonometric Integrals
8.4: Trigonometric Substitution
8.5: Partial Fractions
8.6: Integration by Tables and Other Integration Techniques
8.7: Indeterminate Forms and L’Hopital’s Rule
8.8: Improper Integrals

Chapter 9: Infinite
9.1: Sequences
9.2: Series and Convergence
9.3: The Integral Test and p-Series
9.4: Comparisons of Series
9.5: Alternating Series
9.6: The Ratio and Root Tests
9.7: Taylor Polynomials and Approximations
9.8: Power Series
9.9: Representation of Functions by Power Series
9.10: Taylor and Maclaurin Series

Chapter 10: Conics, Parametric Equations, and Polar Coordinates
10.1: Conics and Calculus
10.2: Plane Curves and Parametric Equations
10.3: Parametric Equations and Calculus
10.4: Polar Coordinates and Polar Graphs
10.5: Area and Arc Length in Polar Coordinates
10.6: Polar Equations of Conics and Kepler’s Laws

Chapter 11: Vectors and the Geometry of Space
11.1: Vectors in the Plane
11.2: Space Coordinates and Vectors in Space
11.3: The Dot Product of Two Vectors
11.4: The Cross Product of Two Vectors in Space
11.5: Lines and Planes in Space
11.6: Surfaces in Space
11.7: Cylindrical and Spherical Coordinates

Chapter 12: Vector-Valued Functions
12.1: Vector-Valued Functions
12.2: Differentiation and Integration of Vector-Valued Functions
12.3: Velocity and Acceleration
12.4: Tangent Vectors and Normal Vectors
12.5: Arc Length and Curvature

Chapter 13: Functions of Several Variables
13.1: Introduction to Functions of Several Variables
13.2: Limits and Continuity
13.3: Partial Derivatives
13.4: Differentials
13.5: Chain Rules for Functions of Several Variables
13.7: Tangent Planes and Normal Lines
13.8: Extrema of Functions of Two Variables
13.9: Applications of Extrema of Functions of Two Variables
13.10: Lagrange Multipliers

Chapter 14: Multiple Integration
14.1: Iterated Integrals and Area in the Plane
14.2: Double Integrals and Volume
14.3: Change of Variables: Polar Coordinates
14.4: Center of Mass and Moments of Inertia
14.5: Surface Area
14.6: Triple Integrals and Applications
14.7: Triple Integrals in Cylindrical and Spherical Coordinates
14.8: Change of Variables: Jacobians

Chapter 15: Vector Analysis
15.1: Vector Fields
15.2: Line Integrals
15.3: Conservative Vector Fields and Independence of Path
15.4: Green’s Theorem
15.5: Parametric Surfaces
15.6: Surface Integrals
15.7: Divergence Theorem
15.8: Stokes’s Theorem

Chapter 16: Additional Topics in Differential Equations
16.1: Exact First-Order Equations
16.2: Second-Order Homogeneous Linear Equations
16.3: Second-Order Nonhomogeneous Linear Equations
16.4: Series Solutions of Differential Equations

Chapter QP: Quick Prep Topics

Title: Calculus
Author: Ron Larson / Bruce H. Edwards/ Robert P. Hostetler
Edition: 9th Edition
ISBN: 0547167024 | 9780547167022
Volumen: Volumen 1 | Volumen 2
Type: eBook | Solution Manual
Language: English
Calculus
REVIEW 85%
85%