Classical Electrodynamics – John David Jackson – 3rd Edition

Description

A revision of the defining covering the and classical necessary to understand in materials and at surfaces and interfaces. The third edition has been revised to address the changes in emphasis and applications that have occurred in the past twenty years.

John David Jackson (born January 19, 1925) is a Canadian–American physics professor emeritus at the of California, Berkeley and a faculty senior scientist emeritus at Lawrence Berkeley National Laboratory. A theoretical physicist, he is a member of the National Academy of Sciences, and is well known for numerous publications and summer-school lectures in nuclear and particle physics, as well as his widely used graduate text on classical .

Table of Content

Introduction to Electrostatics.
Boundary-Value Problems in Electrostatics: I.
Boundary-Value Problems in Electrostatics: II.
Multipoles, Electrostatics of Macroscopic Media, Dielectrics.
Magnetostatics, Faraday's Law, Quasi-Static Fields.
Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws.
Plane Electromagnetic Waves and Wave Propagation.
Waveguides, Resonant Cavities, and Optical Fibers.
Radiating Systems, Multipole Fields and Radiation.
Scattering and Diffraction.
Special Theory of Relativity.
Dynamics of Relativistic Particles and Electromagnetic Fields.
Collisions, Energy Loss, and Scattering of Charged Particles, Cherenkov and Transition Radiation.
Radiation by Moving Charges.
Bremsstrahlung, Method of Virtual Quanta, Radiative Beta Processes.
Radiation Damping, Classical Models of Charged Particles.

1 Comment

  • Feedback: Leave your comments here!

    Your opinions and comments would be greatly appreciated.
    If you have comments or questions we've added this section so that we might have a dialogue with you.

Complete all fields

three + five =