Elementary Differential Equations and Boundary Value Problems – Boyce, DiPrima – 9th Edition

Written from the perspective of the applied mathematician, the latest of this bestselling book focuses on and practical applications of Differential Equations to engineering and the sciences.

Emphasis is placed on the methods of , analysis, and approximation. Use of technology, illustrations, and problem sets help readers develop an intuitive understanding of the . Historical footnotes trace the development of the discipline and identify outstanding individual contributions. This book builds the foundation for anyone who needs to learn differential equations and then progress to more advanced studies.

Chapter 1 Introduction 1
1.1 Some Basic Models; Direction Fields
1.2 Solutions of Some Differential Equations
1.3 Classification of Differential Equations
1.4 Historical Remarks

Chapter 2 First Order Differential Equations
2.1 Linear Equations; Method of Integrating Factors
2.2 Separable Equations
2.3 Modeling with First Order Equations
2.4 Differences Between Linear and Nonlinear Equations
2.5 Autonomous Equations and Population Dynamics
2.6 Exact Equations and Integrating Factors
2.7 Numerical Approximations: Euler’s Method
2.8 The Existence and Uniqueness Theorem
2.9 First Order Difference Equations

Chapter 3 Second Order Linear Equations
3.1 Homogeneous Equations with Constant Coefficients
3.2 Fundamental Solutions of Linear Homogeneous Equations; The Wronskian
3.3 Complex Roots of the Characteristic Equation
3.4 Repeated Roots; Reduction of Order
3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients
3.6 Variation of Parameters
3.7 Mechanical and Electrical Vibrations
3.8 Forced Vibrations

Chapter 4 Higher Order Linear Equations
4.1 General Theory of nth Order Linear Equations
4.2 Homogeneous Equations with Constant Coefficients
4.3 The Method of Undetermined Coefficients
4.4 The Method of Variation of Parameters

Chapter 5 Series Solutions of Second Order Linear Equations
5.1 Review of Power Series
5.2 Series Solutions Near an Ordinary Point, Part I
5.3 Series Solutions Near an Ordinary Point, Part II
5.4 Euler Equations; Regular Singular Points
5.5 Series Solutions Near a Regular Singular Point, Part I
5.6 Series Solutions Near a Regular Singular Point, Part II
5.7 Bessel’s Equation

Chapter 6 The Laplace Transform
6.1 Definition of the Laplace Transform
6.2 Solution of Initial Value Problems
6.3 Step
6.4 Differential Equations with Discontinuous Forcing Functions
6.5 Impulse Functions
6.6 The Convolution Integral

Chapter 7 Systems of First Order Linear Equations
7.1 Introduction
7.2 Review of Matrices
7.3 Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors
7.4 Basic Theory of Systems of First Order Linear Equations
7.5 Homogeneous Linear Systems with Constant Coefficients?
7.6 Complex Eigenvalues
7.7 Fundamental Matrices
7.8 Repeated Eigenvalues
7.9 Nonhomogeneous Linear Systems

Chapter 8 Numerical Methods
8.1 The Euler or Tangent Line Method
8.2 Improvements on the Euler Method
8.3 The Runge-Kutta Method
8.4 Multistep Methods
8.5 More on Errors; Stability
8.6 Systems of First Order Equations

Chapter 9 Nonlinear Differential Equations and Stability
9.1 The Phase Plane: Linear Systems
9.2 Autonomous Systems and Stability
9.3 Locally Linear Systems
9.4 Competing Species
9.5 Predator-Prey Equations
9.6 Liapunov’s Second Method
9.7 Periodic Solutions and Limit Cycles
9.8 Chaos and Strange Attractors: The Lorenz Equations

Chapter10 Partial Differential Equations and Fourier Series
10.1 Two-Point Boundary Value Problems
10.2 Fourier Series
10.3 The Fourier Convergence Theorem
10.4 Even and Odd Functions
10.5 Separation of ; Heat Conduction in a Rod
10.6 Other Heat Conduction Problems
10.7 The Wave Equation: Vibrations of an Elastic String
10.8 Laplace’s Equation
Appendix A Derivation of the Heat Conduction Equation
Appendix B Derivation of the Wave Equation

Chapter 11 Boundary Value Problems and Sturm-Liouville Theory
11.1 The Occurrence of Two-Point Boundary Value Problems
11.2 Sturm-Liouville Boundary Value Problems
11.3 Nonhomogeneous Boundary Value Problems
11.4 Singular Sturm-Liouville Problems
11.5 Further Remarks on the Method of Separation of Variables: A Bessel Series Expansion
11.6 Series of Orthogonal Functions: Mean Convergence
Answers to Problems

Title: Elementary Differential Equations and Boundary Value Problems
Author: William E. Boyce / Richard C. Diprima
Edition: 9th Edition
ISBN: 9780470383346
Type: eBook
Language: English
Differential Equations

No Comments

  • Can you please leave feedback and comments here

    Your opinions and comments would be greatly appreciated. If you have comments or questions we've added this section so that we might have a dialogue with you.

Complete all fields

20 + nine =