Pulse Digital Switching Wave – Jacob Millman, Herbert Taub – 1st Edition

Description

The origins of this classic textbook Pulse, Digital and Switching Waveforms go back to an ageearlier than the 1940’s, being one of the first manuals to offer wide-ranging concepts of andanalysis of pulse generation and waveform-shaping in a simple and reader-friendlymanner. While it retains the original flavour of the , this revised edition also includes discussionson Gate Families, IC 555 Timer and Op-Amp based Multivibrators for up-to-datecoverage. A large number of solved examples, review , numerical and openbook exam are interspersed throughout the text to provide a clear understanding of theconcepts.

Table of Content

CONTENTS

1. REVIEW OF AMPLIFIER CIRCUITS
1-1. Equivalent Circuit of a Vacuum Tube
1-2. Voltage Feedback in Amplifiers . 4
1-3. Current Feedback in Amplifiers . 5
1-4. Illustrations of Current and Voltage Feedback. 6
1-5. Some Characteristics of Feedback Amplifiers 8
1-6. The Cathode Follower. 11
1-7. Graphical Analysis of the Cathode Follower 13
1-8. Practical Cathode-follower Circuits. 15
1-9. Characteristics and Applications of the Cathode Follower 17
1-10. Cathode-follower-type Circuits . 17
1-11. The Operational Amplifier 22
1-12. The Principle of the Virtual Ground in Operational Amplifiers 24
1-13. Basic Uses of Operational Amplifiers 25

2. LINEAR WAVE SHAPING: RC, RL, AND RLC CIRCUITS. 28
2-1. The High-pass RC Circuit 28
2-2. The High-pass RC Circuit as a Differentiator 36
2-3. Double Differentiation. 39
2-4. The Low-pass RC Circuit. 40
2-5. The Low-pass RC Circuit as an Integrator. 46
2-6. RL Circuits. 47
2-7. RLC Circuits 48
2-8. Ringing Circuit. 52

3. LINEAR PULSE AMPLIFIERS 58
3-1. The RC Coupled Amplifier Stage 58
3-2. Steady-state Analysis of an Amplifier 59
3-3. Amplitude and Time-delay Response of an RC Coupled Amplifier
3-4. Unit Step Response of an Amplifier. 63
3-5. Transient Response of an RC Coupled Amplifier Stage 65
3-6. Shunt Compensation to Improve Rise-time Response. 67
3-7. Additional Methods of Rise-time Compensation . 72
3-8. Rise-time Response of Cascaded RC Coupled Amplifiers. 74
3-9. Rise-time Response of Cascaded Amplifiers with Overshoot. 76
3-10. Attenuators. 77
3-11. Rise-time Compensation in the Cathode Circuit 81
3-12. The Oathode Follower at High Frequencies 85
3-13. Low-frequency Compensation 89
3-14. Effect of a Cathode Bypass Capacitor on Low-frequency Response. 93
3-15. Effect of Screen Bypass on Low-frequency Response . 95
3-16. Flat-top Response of Cascaded Stages 96
3-17. The Totem-pole Amplifier. 99
3-18. Cathode Interface Resistance. 101

4. NONLINEAR WAVE SHAPING 104
4-1. Diode Characteristics. 104
4-2. Triode Characteristics. 106
4-3. Clipping or Limiting Circuits. 111
4-4. Compensation for Cathode-temperature Changes in Selectors 117
4-5. Clamping Circuits. 119
4-6. Synchronized Clamping . 126
4-7. Tubes Used as Switches . 129
4-8. An Overdriven Two-stage RC-coupled Amplifier 135
4-9. Cathode Follower with Capacitive Load 138

5. THE BISTABLE MULTIVIBRATOR. 140
5-1. The Stable States of a Binary 140
5-2. The Self-biased Binary 144
5-3. Commutating Capacitors. 146
5-4. Regeneration in a Binary. 147
5-5. Resolving Time in a Binary 150
5-6. Methods of Improving Resolution 152
5-7. Triggering of the Binary . 156
5-8. Unsymmetrical Triggering through a Triggering Tube 159
5-9. Symmetrical Triggering . 161
5-10. The Cathode-coupled Binary. 164
5-11. Hysteresis in the Cathode-coupled Binary . 168
5-12. Cathode Interface Resistance in the Binary 172

6. MONOSTABLE AND ASTABLE MULTIVIBRATORS 174
6-1. The Plate-coupled Monostable Multi-The Stable State. 174
6-2. The Quasi-stable State 175
6-3. Waveforms of Plate-coupled Multi . 178
6-4. The Influence of Tube Current II on Waveforms. 183
6-5. Recovery Time in a Monostable Multi . 184
6-6. The Cathode-coupled Monostable Multi Waveforms. 187
6-7. Overshoots in Cathode-coupled Multi . 190
6-8. Linearity of Delay of Cathode-coupled Multi 193
6-9. The Influence of E on Waveforms . 195
6-10. Triggering of the Monostable Multi. 195
6-11. The Monostable Circuit Adjusted for Free-running Operation 197
6-12. The Astable Plate-coupled Multi. 199

7. VOLTAGE TIME-BASE GENERATORS. 202
7-1. General Features of a Time-base Signal. 202
7-2. The Thyratron Sweep Circuits . 204
7-3. Vacuum-tube Sweep Circuit . 208
7-4. Circuits to Improve Sweep Linearity 213
7-5. The Miller Sweep . 217
7-6. Pentode Miller Sweep with Suppressor Gating.
7-7. Phantastron Circuits .
7-8. The Bootstrap Sweep.
7-9. Additional Methods of Linearity Improvement

8. CURRENT TIME-BASE GENERATORS
8-1. The Generator Waveform. 236
8-2. Effect of the Omission of the Impulsive Component of Current. 238
8-3. Current Drivers 240
8-4. Methods of Linearity Improvement. 244
8-5. Illustrative Current-sweep Circuits . 247
8-6. Television Sweep Circuit. 248

9. PULSE TRANSFORMERS AND BLOCKING OSCILLATORS 253
9-1. Equivalent Circuit. 253
9-2. Transformer Inductance Parameters. 256
9-3. Transformer Capacitances 259
9-4. Ferrite Cup-core Transformers . 261
9-5. Rise-time Response of a Transformer 263
9-6. The Flat Top of the Pulse 265
9-7. Decay-time Response of a Transformer. 267
9-8. Pulse-transformer Design Considerations 271
9-9. The Blocking Oscillator . 272
9-10. The Blocking-oscillator Rise Time . 275
9-11. The Blocking-oscillator Pulse Amplitude 276
9-12. The Blocking-oscillator Pulse Width. 278
9-13. The Blocking-oscillator Backswing . 280
9-14. The Blocking-oscillator Period 281
9-15. The Blocking-oscillator Output Impedance. 282
9-16. The Blocking-oscillator Output Terminals 282
9-17. The Monostable Blocking Oscillator. 283
9-18. Applications of Blocking Oscillators. 284

10. ELECTROMAGNETIC DELAY LINES 286
10-1. Distributed-parameter Lines. 286
10-2. Lumped-parameter Delay Lines. 291
10-3. Reflections on Transmission Lines 299
10-4. Delay-line Control of a Blocking Oscillator. 305
10-5. Pulse Coders 307
10-6. Pulse Decoders. 309
10-7. Distributed Amplifiers. 315
10-8. Distributed Amplifiers in Cascade 318
10-9. Practical Considerations in Distributed Amplifiers 319

11. COUNTING 323
11-1. The Binary Chain as a Divider 323
11-2. The Binary Chain as a Counter. 325
11-3. Counting to a Base Other than 2 327
11-4. Improvement of Resolution in a Binary Chain with Feedback 329
11-5. Additional Types of Decade Counters 330
11-6. Reversible Binary Counter 335
11-7. A Special Gas-filled Counter Tube . 335
11-8. A Vacuum-type Counter Tube 339
11-9. Ring Counters . 343
11-10. Application of Counters . 344
11-11. Storage Counters . 346
11-12. Linearization of Storage Counters 350
11-13. Applications of Storage Counters 352

12. SYNCHRONIZATION AND FREQUENCY DIVISION 355
12-1. Pulse Synchronization of Relaxation Devices 355
12-2. Frequency Division in the Thyratron Sweep 358
12-3. Other Astable Relaxation Circuits . 360
12-4. Monostable Relaxation Circuits as Dividers 363
12-5. Stability of Relaxation Dividers. 364
12-6. Stabilization of Frequency Dividers by Resonant Circuits 368
12-7. Synchronization of a Thyratron Sweep with Sinusoidal Signals. 372
12-8. Sine-wave Frequency Division with a Thyratron Sweep . 377
12-9. Sine-wave Synchronization of Other Relaxation Devices. 378
12-10. A Sinusoidal Divider Using Regeneration and Modulation 382
12-11. The Locked Oscillator as a Divider . 384
12-12. Synchronization of a Sinusoidal Oscillator with Pulses 386

13. DIGITAL COMPUTER CIRCUITS 392
13-1. Some Features of a Digital Computer 392
13-2. The OR Circuit. 394
13-3. The AND Circuit. 397
13-4. The NOT Circuit . 400
13-5. The INHIBITOR Circuit. 401
13-6. An Example of a Switching Circuit . 404
13-7. The AND Circuit Used for Pulse Reshaping 407
13-8. Regenerative Broadening. 409
13-9. The EXCLUSIVELY-OR Circuit 411
13-10. Registers 411
13-11. Dynamic Registers. 413
13-12. The Dynamic Binary 415
13-13. The Havens Delay Circuit 416
13-14. Binary Addition 419
13-15. Code-operated Multiposition Switch. 422
13-16. Magnetic-core Binary Elements. 425
13-17. Applications of Magnetic Binary Cores. 425

14. TRANSMISSION GATES 429
14-1. Basic Operating Principle of Gates
14-2. Unidirectional Diode Gate
14-3. An Application of the Unidirectional Diode Gate.
14-4. Other Forms of the Unidirectional Diode Gate.
14-5. Bidirectional Gates Using Multielement Tubes
14-6. Reduction of Pedestal in a Gate Circuit
14-7. A Bidirectional Diode Gate .
14-8. Balance Conditions in a Bidirectional Diode Gate.
14-9. Signal Input Impedance and Connections
14-10. Effect of Circuit Capacitances. Example
14-11. Four-diode Gate
14-12. Six-diode Gate.
14-13. Synchronous Clamp
14-14. Operation of Synchronous Clamp.
14-15. Balance Conditions in Synchronous Clamp.

a-16. Other Forms of Gating and Clamping Circuits.

15. VOLTAGE COMPARATORS
15-1. Applications of Voltage Comparator:=
15-2. ClaslSification of Comparator Circuits
15-3. A Diode in Cascade with a Nonregellerative Amplifier
15-4. Factors Affecting Comparator Operation
15-5. A Tube Operating at Cutoff
15-6. Regenerative Comparators
15-7. The Multiar.
15-8. Blocking-oscillator Comparator
15-9. The A-C Coupled Multivibrator Comparator
15-10. The D-C Cathode-coupled Multivibrator Comparator
15-11. A Gas-tube Comparator Used as a Switch
15-12. Comparators for Sinusoidal Voltages
15-13. Amplifiers for Comparators .

16. TIME MODULATION AND MEASUREMENT 485
16-1. Time-base Modulation Systems . 485
16-2. Comparison of Bootstrap and Miller Time-base Generators. 487
16-3. An Analogue-to-Digital Converter . 491
16-4. Phase-modulation System. 494
16-5. Phase-shifting Devices and Circuits. 495
16-6. Multiple-scale Modulation 499
16-7. Delay-line Modulation. 501
16-8. Pulsed Oscillators . 504
16-9. Double-scale Time-modulation Systems, Externally Synchronized 506
16-10. Time Measurements . 508

17. PULSE AND DIGITAL SYSTEMS 515
17-1. Fundamental Principles of Television Transmission
17-2. Interlaced Scanning
17-3. Composite Television Signal .
17-4. The Synchronizing Signal.
17-5. Signal Separation at the Receiver
17-6. The Synchronizing Signal Generator.
17-7. Synthesis of Composite Television Signal
17-8. Bandwidth Requirements of a Television Channel.
17-9. Basic Elements of a Radar System
17-10. Type A and R Indicators.
17-11. Plan-position Indicator, PPI .
17-12. Resolved Sweeps .
17-13. Other Types of Displays .
17-14. Electronic Marking on a Display

18. TRANSISTORS IN PULSE AND DIGITAL CIRCUITS
18-1. Semiconductors.
18-2. Donor and Acceptor Impurities .
18-3. Drift and Diffusion 551
18-4. The p-n Junction . 552
18-5. The Junction Transistor 556
18-6. Characteristics of Transistors-The Grounded-base Configuration 559
18-7. The Grounded-emitter Configuration 562
18-8. The Grounded-collector Configuration . 564
18-9. A Vacuum Tube-Transistor Analogy 564
18-10. Voltage and Current Limits in Transistor Switching Circuits 567
18-11. A Linear Equivalent Circuit for a Transistor . 568
18-12. Transistors as Small-signal Amplifiers . 573
18-13. Comparison of Transistor Amplifier Configurations 575
18-14. Equivalent Circuit of a Transistor at High Frequencies 578
18-15. Transient Response of Transistors 581
18-16. Effect of Collector Capacitance 584
18-17. Delay Time in a Transistor . 585
18-18. Storage Time in a Transistor. 586
18-19. Over-all Transistor Response. 587
18-20. Analytic Expressions for Transistor Characteristics 589
18-21. DC Conditions in Cutoff and Saturation Regions. 593
18-22. A Transistor Binary Circuit . 595
18-23. A Direct-connected Binary Circuit . 598
18-24. Monostable and Astable Transistor Multivibrators 599
18-25. The Blocking Oscillator 602
18-26. Logical Circuits. 604

No Comments

  • Feedback: Leave your comments here!

    Your opinions and comments would be greatly appreciated.
    If you have comments or questions we've added this section so that we might have a dialogue with you.

Complete all fields

9 + thirteen =